关于| 联系| 地图| 邮箱
首页>>>学术期刊>>>期刊年表>>>2024年论文集(45卷)
2024年论文集(45卷) 2023年论文集(44卷) 2022年论文集(43卷) 2021年总目录(42卷) 2020年总目录(41卷) 2019年总目录(40卷) 2018年总目录(39卷) 2017全年目录(38卷) 2016全年目录(37卷) 2015全年目录(36卷) 2014全年目录(35卷) 2013全年目录(34卷) 2012全年目录(33卷) 2011全年目录(32卷) 2010全年目录(31卷) 2009全年目录(30卷) 2008全年目录(29卷) 2007全年目录(28卷) 2006全年目录(27卷) 2005全年目录(26卷) 2004全年目录(25卷) 2003全年目录(24卷) 2002全年目录(22卷) 2001全年目录(22卷) 2000全年目录(21卷)

20240501垂直电梯的故障预测技术研究综述

‖  文章供稿:闫明明1,2  李宁2  唐梓敏1,2  刘智学2
‖  字体: [大] [中] [小]

闫明明1,2  李宁2  唐梓敏1,2  刘智学2

(1.华南理工大学自动化科学与工程学院,广东 广州 510641

2.广州广日电梯工业有限公司,广东 广州 511447)

摘要:为促进故障预测技术在电梯维保领域的研究,综述了垂直电梯故障预测技术的最新进展和研究成果。根据垂直电梯故障预测实现方式的不同,将其分为基于经验模型的故障预测方法和基于数据驱动的故障预测方法,并对这两类故障预测方法的特点进行分析和总结。针对垂直电梯故障预测技术发展面临的挑战,未来应加强垂直电梯故障机理研究,优化数据处理和特征提取算法,进一步开发具有优良泛化能力和高准确度的故障预测模型。同时,做好全生命周期的高价值数据积累工作,为故障预测模型的持续优化提供坚实基础。

关键词:故障预测;电梯维保;垂直电梯

中图分类号:TP206.3            文献标志码:A          文章编号:1674-2605(2024)05-0001-10

DOI:10.3969/j.issn.1674-2605.2024.05.001                     开放获取

Overview of Fault Prediction Technology for Vertical Elevators 

YAN Mingming1,2  LI Ning2  TANG Zimin1,2  LIU Zhixue2

(1.School of Automation Science and Engineering, South China University of Technology, Guangzhou    510641, China  2.Guangzhou Guangri Elevator Industry Co., Ltd., Guangzhou 511447, China)

Abstract: To promote the research of fault prediction technology in the field of elevator maintenance, the latest progress and research achievements of vertical elevator fault prediction technology are summarized. According to the different implementation methods of vertical elevator fault prediction, it is divided into empirical model-based fault prediction methods and data-driven fault prediction methods, and the characteristics of these two fault prediction methods are analyzed and summarized. In response to the challenges faced by the development of vertical elevator fault prediction technology, future research on vertical elevator fault mechanisms should be strengthened, data processing and feature extraction algorithms should be optimized, and fault prediction models with excellent generalization ability and high accuracy should be further developed. At the same time, do a good job in accumulating high-value data throughout the entire life cycle, providing a solid foundation for the continuous optimization of fault prediction models.

Keywords: fault prediction; elevator maintenance; elevator

打印