曾俊海1 廉胤东2 彭雄峰1 余锦伟3
(1.华南理工大学自动化科学与工程学院,广东 广州 510641
2.南方电网供应链科技(广东)有限公司,广东 广州 510630
3.中国电信股份有限公司广东研究院,广东 广州 510660)
摘要:随着客制化和大规模生产需求的不断增长,矩阵制造车间的重要性日益凸显。同时,多台自动导引车(AGV)的有效调度可提高矩阵制造车间的运行效率。以矩阵制造车间内的AGV运输过程为研究对象,提出一种改进的模拟退火(ISA)算法,旨在找到降低运输成本的最佳调度方案。ISA算法通过Metropolis准则来提高算法跳出局部最优解的能力;利用顺序交叉算子和前置交叉算子更新种群,以提高ISA算法寻找全局最优解的收敛速度和精度;提出一种种群重生机制,避免ISA算法陷入局部最优解。为了评估ISA算法的有效性,在某工厂100个真实实例的数据集上进行了仿真测试,并与FCFS算法、HFOA、IHS算法进行对比实验。实验结果表明,ISA算法更适合解决矩阵制造车间的AGV调度问题。
关键词:矩阵式制造车间;自动导引车;模拟退火算法;调度问题
中图分类号:TP242.6 文献标志码:A 文章编号:1674-2605(2024)05-0005-08
DOI:10.3969/j.issn.1674-2605.2024.05.005 开放获取
Improved Simulated Annealing Algorithm for AGV Scheduling
in Matrix Manufacturing Workshops
ZENG Junhai1 LIAN Yindong2 PENG Xiongfeng1 YU Jinwei3
(1.School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China 2.Southern Power Grid Supply Chain Technology (Guangdong) Co., Ltd., Guangzhou 510630, China
3.Guangdong Research Institute of China Telecom Corporation Limited, Guangzhou 510660, China)
Abstract: With the increasing demand for customization and large-scale production, the importance of matrix manufacturing workshops is becoming increasingly prominent. Meanwhile, the effective scheduling of multiple Automated Guided Vehicle (AGV) can improve the operating efficiency of matrix manufacturing workshops. Taking the AGV transportation process in the matrix manufacturing workshop as the research object, an improved simulated annealing (ISA) algorithm is proposed to find the optimal scheduling scheme to reduce transportation costs. The ISA algorithm improves its ability to escape from local optima through the Metropolis criterion; Using sequential crossover operators and pre crossover operators to update the population, in order to improve the convergence speed and accuracy of the ISA algorithm in finding the global optimal solution; Propose a population regeneration mechanism to prevent the ISA algorithm from getting stuck in local optima. In order to evaluate the effectiveness of the ISA algorithm, simulation tests were conducted on a dataset of 100 real instances in a certain factory, and comparative experiments were conducted with the FCFS algorithm, HFOA, and IHS algorithm. The experimental results indicate that the ISA algorithm is more suitable for solving AGV scheduling problems in matrix manufacturing workshops.
Keywords: matrix manufacturing workshops; automated guided vehicle; simulated annealing algorithm; scheduling problem