关于| 联系| 地图| 邮箱
首页>>>学术期刊>>>期刊年表>>>2024年论文集(45卷)
2024年论文集(45卷) 2023年论文集(44卷) 2022年论文集(43卷) 2021年总目录(42卷) 2020年总目录(41卷) 2019年总目录(40卷) 2018年总目录(39卷) 2017全年目录(38卷) 2016全年目录(37卷) 2015全年目录(36卷) 2014全年目录(35卷) 2013全年目录(34卷) 2012全年目录(33卷) 2011全年目录(32卷) 2010全年目录(31卷) 2009全年目录(30卷) 2008全年目录(29卷) 2007全年目录(28卷) 2006全年目录(27卷) 2005全年目录(26卷) 2004全年目录(25卷) 2003全年目录(24卷) 2002全年目录(22卷) 2001全年目录(22卷) 2000全年目录(21卷)

20240613基于支持向量机的车险购买意向识别方法

‖  文章供稿:邵延富  谢大为
‖  字体: [大] [中] [小]

邵延富  谢大为

(广州市景心科技股份有限公司,广东 广州 510000)

摘要:针对传统的人工方式判断车主是否有意向购买车险存在效率低、缺乏预测性等问题,提出一种基于支持向量机的车险购买意向识别方法。首先,通过标准化处理与主成分分析降维,将30维的通话数据映射至10维空间,并采用欠抽样策略解决数据样本不平衡的问题;然后,利用SVM模型区分有、无意向车主。实验结果表明,SNM模型的识别召回率和误检率分别为97.9%、4.3%。该方法可为车险公司个性化服务提供技术支持。

关键词:车险购买意向识别;主成分分析;支持向量机;通话数据

中图分类号:TP311.5           文献标志码:A          文章编号:1674-2605(2024)06-0013-06

DOI:10.3969/j.issn.1674-2605.2024.06.013                    开放获取

A Method of Car Insurance Purchase Intention Recognition Based on    Support Vector Machine

SHAO Yanfu  XIE Dawei

(Guangzhou Joysim Technology Co., Ltd., Guangzhou 510000, China)

Abstract: Aiming at the problems of low efficiency and lack of predictability in traditional manual methods of judging whether car owners intend to purchase car insurance, a car insurance purchase intention recognition method based on support vector machine is proposed. Firstly, through standardization and principal component analysis dimensionality reduction, the 30 dimensional call data is mapped to a 10 dimensional space, and under sampling strategy is adopted to solve the problem of imbalanced data samples; Then, use SVM model to distinguish between interested and uninterested car owners. The experimental results show that the recognition recall rate and false detection rate of the SNM model are 97.9% and 4.3%. This method can provide technical support for personalized services of car insurance companies.

Keywords: car insurance purchase intention recognition; principal component analysis; support vector machine; calling data

打印